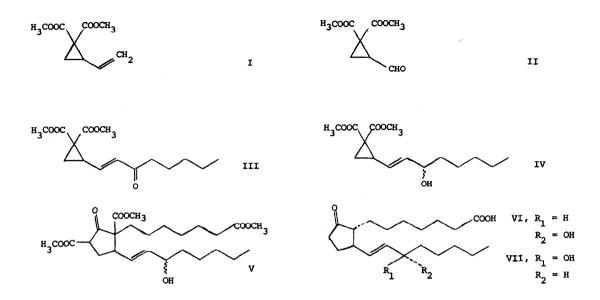
PROSTAGLANDIN IX. A SIMPLE SYNTHESIS OF OPTICALLY ACTIVE 11-DEOXYPROSTAGLANDINS

N.A. Abraham

Averst Research Laboratories, Montreal, Canada


(Received in USA 19 February 1974; received in UK for publication 4 March 1974)

Optically active ll-deoxyprostaglandins have been obtained i) by selective hydrogenation of PGA₂ derived from the gorgonian <u>Plexaura homomala</u>,² ii) by dehydration of natural PGE followed by selective hydrogenation² and iii) by the use of optically active organometallic reagents.³ These methods appeared unattractive for the large scale preparation of the title compounds.

Recently we reported a short synthesis of (\pm) -ll-deoxyprostaglandins.⁴ The key step (IV + V) in this synthesis involves a stereospecific opening of the cyclopropane ring. In the present communication, advantage has been taken of this stereospecificity for the preparation of optically active ll-deoxyprostaglandins. The process is characterized by readily available starting materials and by manipulative simplicity. As an example we give the syntheses of (-)-ll-deoxy PGE₁ (VI) and (-)-l5-<u>epi</u>-ll-deoxy PGE₁ (VII) both belonging to the natural series.

 (\pm) -2-Vinylcyclopropane-1,1-dicarboxylic acid⁵ was resolved via the monobrucine salt. The (-)-acid was esterified with diazomethane to I, $[\alpha]_D$ -54.7°,⁶ which was ozonized with MeOH at -75° and the ozonide decomposed with dimethyl sulfide to give II, $[\alpha]_D$ -142.7°. II was successively transformed⁷ to III, $[\alpha]_D$ -87.8° and to a mixture of epimeric alcohols, IV, $[\alpha]_D$ -60.8°. The tetrahydropyranyl ether of IV was condensed⁷ with HC(COOCH₃)₂(CH₂)₆COOCH₃ and the protecting group removed⁷ to yield the mixture of epimeric alcohols, V, $[\alpha]_D$ -8.9°. Hydrolysis⁷ of V followed by chromatographic separation afforded ll-deoxy PGE₁ (VI), m. 95-97° (lit.³ 95-96°), $[\alpha]_D$ -51.8° (lit.³ -51.0°, CHCl₃) and 15-<u>epi</u>-11-deoxy PGE₁ (VII), $[\alpha]_D$ -52.9° both belonging to the natural series.

1393

The fact that the specific rotation of VI agrees with the value reported for 11-deoxy PGE₁ indicates that the opening of the cyclopropane ring of IV to form V has been completely stereospecific⁸ and that the newly formed asymmetric centre at C₁₂ (prostaglandin numbering) in V is optically pure. Since decarbomethoxylative hydrolysis of V to VI and VII creates a <u>trans</u> C₈-C₁₂ junction in VI and VII, the C₈ centre in the latter two compounds is also optically pure. The author acknowledges the able technical assistance of (Miss) H. Venda and Y.-S. Lin.

References

- 1) Paper VIII, N.A. Abraham, J. Chem. Soc. Comm., submitted
- 2) F.H. Lincoln et al, J. Org. Chem., 38, 951(1973)
- 3) C.J. Sih et al, <u>Tetrahedron Letters</u>, 2435(1972) and A.F. Kluge et al, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 9256(1972).
- N.A. Abraham, <u>Tetrahedron Letters</u>, 451(1973)
- 5) This compound was prepared as described by R.W. Kierstead et al, J. Chem. Soc., 3610(1952) except that 1,4-dibromo-2-butene was replaced by 1,4-dichloro-2-butene.
- 6) S. Danishefsky and G. Rovnyak, J. <u>Chem. Soc. Comm.</u>, 821(1972). These authors report a value of 55.2° for the (+)~ester. The rotations were taken in CCl₄ (c=1) for I to V and in CHCl₃ (c=1) for VI and VII.
- 7) Under conditions described in reference 4, which also gives the yield.
- 8) We have no experimental proof, at this stage, to show whether this stereospecificity occurs with complete retention or with complete inversion. Pyrrolidine is reported to open the cyclopropane ring in I with clean inversion. See reference 6.